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Abstract: - This paper presents a novel feedback linearization control of nonlinear systems with uncertainties for 
the tracking and almost disturbance decoupling and develops an Acquired Immunity Deficiency Syndrome 

control strategy. The main contribution of this study is to construct a controller, under appropriate conditions, 

such that the resulting closed-loop system is valid for any initial condition and bounded tracking signal with the 
following characteristics: input-to-state stability with respect to disturbance inputs and almost disturbance 

decoupling. In order to demonstrate the applicability, this paper develops the feedback linearization design for 

the control of a mathematical HIV/AIDS model system to improve the viral load. The performances of drug 

treatment based on our proposed novel nonlinear geometric feedback control approach are better than some 
existing approaches, i.e., the healthy CD+ T cell population can be kept in original cells per cubic millimeter and 

the viral load is reduced only after more short days of drug treatment. 

 
Key-Words: - Almost Disturbance Decoupling; Feedback Linearization Approach; Acquired Immunity 
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1 Introduction 
Acquired Immunity Deficiency Syndrome (AIDS) is 

the disease that has controlled the human world about 

30 years since it was first identified in 1981. Infection 

with the human immunodeficiency virus causes a 

continuously decay in the number of CD4-T –

lymphocytes that eventually drives to the lethal AIDS. 

Once HIV invades the human body, the immune 

system is immediately turned on and tries to destroy 

it. The information of invasion is transferred to 

CD4+T cells. The CD4 plays a role of a protein 

protector in the surface of the T cell and the organ is 

responsible for maturing these cells after they move 

from the bone marrow where they are initially created. 

The protected surface of CD4+T owns a protein that 

can bind foreign substances such as HIV. 

The HIV is in want of a host in order to reproduce 

and the above mentioned protein marker provides 

aegis. The HIV virus is a kind of retrovirus, the RNA 

of the HIV virus is transferred into DNA inside the 

CD4+T cell. Therein, when infected CD4+T cells 

multiply themselves to fight this pathogen, they 

produce more virus. Mathematical analysis of HIV 

infection is actively investigated since the middle the 

90’s. A great number of researches have attempted to 

develop mathematical models in order to the describe 

infection dynamics [31, 40]. These models are 

represented by a set of relatively complex nonlinear 

differential equations which model the immune 

system and the long term interaction with the virus. 

The new therapeutic strategies are aimed at the 

purpose of reducing viral load and improving the 

immune dynamic response. This creates new hope to 

the therapeutic strategies of HIV infection, and we 

are exploring strategies using nonlinear control 

techniques. One of them is based on the famous state 

feedback approach, but fortuneless it appears not 

very explored [6, 15].  As a matter of fact, feedback 

control of HIV-1 is difficult by the inherent nonlinear 

nature of the involved mechanisms [15]. 

Many approaches to design feedback controllers 

for nonlinear models have been proposed including 

feedback linearization, variable structure control 

(sliding mode control), backstepping, regulation 

control, nonlinear H
∞

control, internal model 

principle and H
∞

 adaptive fuzzy control. [29] has 

proposed the use of variable structure control to deal 

with nonlinear system. However, chattering behavior 

that caused by discontinuous switching and imperfect 

implementation that can drive the system into 

unstable regions is inevitable for variable structure 

control schemes. Backstepping has proven to be a 
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powerful tool of synthesizing controllers for 

nonlinear systems.  However, a disadvantage of this 

approach is an explosion in the complexity which a 

result of repeated differentiations of nonlinear 

functions [46, 50]. An alternative approach is to 

utilize the scheme of the output regulation control [24] 

in which the outputs are assumed to be excited by an 

exosystem. However, the nonlinear regulation 

approach requires the solution of difficult partial-

differential algebraic equations.  Another difficulty is 

that the exosystem states need to be switched to 

describe changes in the output and this creates 

transient tracking errors [41]. In general, nonlinear H
∞
 control requires the solution of Hamilton-Jacobi 

equation, which is a difficult nonlinear partial-

differential equation [2, 25, 47]. Only for some 

particular nonlinear systems it is possible to derive a 

closed-form solution [23]. The control approach that 

is based on the internal model principle converts the 

tracking problem into a non-linear output regulation 

problem. This approach depends on solving a first-

order partial-differential equation of the center 

manifold [24]. For some special nonlinear systems 

and desired trajectories, the asymptotic solutions of 

this equation have been developed using ordinary 

differential equations [16, 21]. Recently, H
∞

 adaptive 

fuzzy control has been proposed to systematically 

deal with nonlinear systems [9]. The drawback with 

H
∞

 adaptive fuzzy control is that the complex 

parameter update law makes this approach 

impractical in real-world situations.  During the past 

decade significant progress has been made in 

researching control approaches for nonlinear systems 

based on the feedback linearization theory [22, 29, 38, 

45]. Moreover, feedback linearization approach has 

been applied successfully to many real control 

systems. These include the control of an 

electromagnetic suspension system [26], pendulum 

system [10], spacecraft [44], electrohydraulic 

servosystem [1], car-pole system [3] and a bank-to-

turn missile system [32]. 

Feedback linearization approach is one of the most 

significant nonlinear methods developed during the 

last few decades [22]. This approach may result in 

linearization which is valid for larger practical 

operating regions of the control system, as opposed 

to a local Jacobian linearization about an operating 

point [11]. Neural network feedback linearization 

(NNFBL) was first investigated in [7] and 

extensively addressed in [8]. NNFBL has been 

applied to many practical systems. [13] obtains the 

best published result in a cancer chemotherapy 

problem using NNFBL. [34] proposed a hybrid 

controller using NNFBL to control a levitated object 

a magnetic levitation system. In the field of aerospace 

engineering, neural networks have solved 

successfully the aircraft control problem. A 

cerebellar model articulation controller (CMAC) is 

addressed by [33] for command to life-of-sight 

missile guidance law design.  The CMAC control is 

comprised of a CMAC and a compensation controller. 

The CMAC controller is used to imitate a feedback 

linearization law and the compensation controller is 

utilized to compensate the difference between these 

two controllers. NNFBL can be applied to 

complicated pharmacogenomics systems to find 

adequate drug dosage regimens [11] and extensively 

addressed in [12] and [14]. Continuous stirred tank 

reactor (CSTR) is widely utilized in chemical 

industry and can be simplified as an affine nonlinear 

system. [17] applied NNFBL to design a predictive 

functional control of CSTR and achieve good control 

performance. 

It is difficult to obtain completely accurate 

mathematical models for many practical control 

systems. Thus, there are inevitable uncertainties in 

their models. Therefore, the design of a robust 

controller that deals with the uncertainties of a 

control system is of considerable interest. This study 

presents a systematic analysis and a simple design 

scheme that guarantees the globally asymptotical 

stability of a feedback-controlled uncertain system 

and that achieves output tracking and almost 

disturbance decoupling performances for a class of 

nonlinear control systems with uncertainties. 

The almost disturbance decoupling problem, i.e., 

that is the design of a controller that attenuates the 

effect of the disturbance on the output terminal to an 

arbitrary degree of accuracy, was originally 

developed for linear and nonlinear control systems by 

[35] and [49] respectively. The problem has attracted 

considerable attention and many significant results 

have been developed for both linear and non-linear 

control systems [36, 42, 48]. The almost disturbance 

decoupling problem of non-linear single-input 

single-output (SISO) systems was investigated in [35] 

by using a state feedback approach and solved in 

terms of sufficient conditions for systems with 

nonlinearities that are not globally Lipschitz and 

disturbances bring linear but possibly actually bring 

multiples of nonlinearities. The resulting state 

feedback control is constructed following a singular 

perturbation approach. 

The aim of [5] was to propose a strategy of control 
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of the HIV-1 infection via the original nonlinear 

geometric feedback control on a fundamental 

mathematical predator-prey model. Its result shows 

that the viral load is reduced after 720 days of drug 

treatment. An existing infectious model describing 

the interaction of HIV virus and the immune system 

of the human body is applied to determine the 

nonlinear optimal control for administering anti-viral 

medication therapies to fight HIV infection via a 

competitive Gauss–Seidel like implicit difference 

method [28]. The virus population in presence of 

treatment approaches to zero after 50 days of drug 

treatment.  Another optimal control using an iterative 

method with a Runge–Kutta fourth order scheme that 

represents how to control drug treatment strategies of 

this model is examined [27]. However, the virus load 

in presence of treatment does not reach to zero and 

the healthy CD+ T cell population increase almost 

linearly up to 45 days and levels off after that time.  

On the contrary, based on our proposed approach in 

this study, the healthy CD+ T cell population can be 

kept in 1000 cells per cubic millimeter and the viral 

load is reduced only after 11 days of drug treatment. 

We will propose a new method to guarantee that 

the closed-loop system is stable and the almost 

disturbance decoupling performance is achieved.  In 

order to exploit the significant applicability, this 

paper also has successfully derived the tracking 

controller with almost disturbance decoupling for a 

biomedical HIV/AIDS model system. This paper is 

organized as follows. In section 2, we provide the 

nonlinear control design method. Section 3 is devoted 

to an application of HIV/AIDS model system. Some 

numerical results are also presented in section 3. 

After all, some concluding remarks are given in 

section 4. 

 
 

2 Problem Formulation and Main 

Result 
The following nonlinear uncertain control system 

with disturbances is considered. 
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 (2.1a) 

1 2( ) ( , ,.., )ny t h x x x  (2.1b) 

that is 

*

1

( ) ( ( )) ( ( ))
i

p

id

i

X t f X t g X t u f q 


      

( ) ( ( ))y t h X t  

where  1 2( ) : ( ) ( ) ( )
T n

nX t x t x t x t   is the state 

vector, 1u  is the input, 1y is the output, 

1 2: ( ) ( ) ( )
T

d d d pdt t t       is a bounded time-

varying disturbance vector and 

 1 2:  n

nf f f f       is unknown nonlinear 

function representing uncertainty such as modelling 

error.  Let f  be described as  

*

1
i

p

iu

i

f q 


   

where 
1 2: ( ) ( ) ( )

T

u u u put t t        is a bounded time-

varying vector. * *

1, , , , pf g q q  are smooth vector 

fields on n , and 1( ( ))h X t   is a smooth function. 

The nominal system is then defined as follows: 

( ) ( ( )) ( ( ))X t f X t g X t u   (2.2a) 

( ) ( ( ))y t h X t  (2.2b)

 
The nominal system (2.2) consists of relative degree 

r [19], i.e., there exists a positive integer 1 r    
such that 

( ( )) 0,  1k

g fL L h X t k r  
 (2.3) 

1 ( ( )) 0r

g fL L h X t 
 (2.4) 

for all nX   and [0, )t  , where the operator L  is 

the Lie derivative [22]. The desired output trajectory 

( )dy t and its first r derivatives are all uniformly 

bounded and 

(1) ( )( ), ( ) , , ( )r

d d d dy t y t y t B     (2.5) 

where dB  is some positive constant. 

It has been shown [22] that the mapping 

: n n    (2.6) 

defined as 

1( ( )) : ( ) ( ( )), 1,2, ,i

i i fX t t L h X t i r      (2.7) 
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( ( )) : ( ), 1, 2, ,k kX t t k r r n      (2.8) 

and satisfying 

( ( )) 0, 1, 2, ,g kL X t k r r n    
 (2.9)

 

is a diffeomorphism onto image. For the sake of 

convenience, define the trajectory error to be  

( 1)( ) : ( ) ( ), 1,2, ,i

i i de t t y t i r     (2.10) 

 1 2( ) : ( ) ( ) ( )
T r

re t e t e t e t 
 (2.11) 

the trajectory error multiplied with some adjustable 

positive constant   

1( ) : ( ), 1,2, ,i

i ie t e t i r    (2.12) 

1 2( ) : ( ) ( ) ( )
T

r

re t e t e t e t  
   (2.13) 

and 

 1 2( ) : ( ) ( ) ( )
T r

rt t t t    
 (2.14a) 

 1 2( ) : ( ) ( ) ( )
T n r

r r nt t t t    

  
 (2.14b) 

 

1 2

1 2

( ( ), ( )) : ( ) ( ) ( )

                  :

T

f r f r f n

T

r r n

q t t L t L t L t

q q q

     

 

   


 (2.14c) 

Define a phase-variable canonical matrix 
cA  to be  

1 2 3

0 1 0 0

0 0 1 0

:

0 0 0 1

c

r r r

A

   


 
 
 
 
 
 
       (2.15) 

where 1 2, , , r    are any chosen parameters such 

that cA  is Hurwitz and the vector B  to be 

 
1

: 0 0 0 1
T

r
B


  (2.16) 

Let P  be the positive definite solution of the 
following Lyapunov equation 

IPAPA c
T
c   (2.17) 

max :  the maximum eigenvalue of P  (2.18) 

min :   the minimum eigenvalue of P  (2.19) 

Assumption 1.   

For all 0t  , n r   and r  , there exists a 

positive constant L such that the following inequality 

holds 

 22 22( , ) ( ,0)q e q L e    (2.20) 

where 
22 ( , ) : ( , )q e q   . 

For the sake of convenience, define 

1: ( ( ))r

g fd L L h X t  (2.21a) 

: ( ( ))r

fc L h X t  (2.21b) 

and 

1 1 2 2 r re e e e       (2.22) 

Definition 1. [29] 

Consider the system ( , , ),x f t x  where

: [0, ) nf    n n   is piecewise continuous in 

t  and locally Lipschitz in x  and  . This system is 

said to be input-to-state stable if there exists a class 

KL  function  , a class K  function   and positive 

constants 
1k  and 

2k  such that for any initial state 

 0x t  with  0 1x t k  and any bounded input ( )t  

with  
0

2sup ,
t t

t k


  the state exists and satisfies 

 
0

0 0( ) ( ) , sup ( )
t t

x t x t t t


   
 

 
    

   (2.23a) 

for all . 
0 0t t  .  Now we formulate the tracking 

problem with almost disturbance decoupling as 

follows: 

Definition 2. [36] 
The tracking problem with almost disturbance 

decoupling is said to be globally solvable by the state 

feedback controller u  for the transformed-error 

system by a global diffeomorphism (2.6), if the 

controller u  enjoys the following properties. 

<i>It is input-to-state stable with respect to 

disturbance inputs. 

<ii>For any initial value  0 0 0: ( ) ( )
T

ex e t t , for any 

0t t  and for any 0 0t  . 

 
0

11 0 0 33

22

1
( ) ( ) ( ) , sup ( )d

t t

y t y t x t t t


   
  

 
     

 
 

WSEAS TRANSACTIONS on SYSTEMS Chiou-Jye Huang, Kai-Hung Lu, Hsin-Chuan Chen

E-ISSN: 2224-2678 126 Volume 17, 2018



 (2.23b) 
and 

      
0 0

22

55 0 33

44

1
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t t
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 (2.23c) 
where 

22 ,  
44  are some positive constants, 

33 ,  

55  are class K  functions and 
11  is a class KL  

function. 

Theorem 1.   

Suppose that there exists a continuously 

differentiable function 
0 :

n r

V
    such that the 

following three inequalities hold for all 
n r




 . 

(a) 
2 2

1 0 2 1 2( ) ,  , 0k V k k k      (2.24a) 

(b) 
2

0 22 3 3( ) ( ,0) ,  0TV q k k       (2.24b) 

(c) 
0 4 4, 0V k k    , (2.24c) 

then the tracking problem with almost disturbance 

decoupling is globally solvable by the controller 

defined by 


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1
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(2.25) 

Moreover, the influence of disturbances on the 
2L  

norm of the tracking error can be arbitrarily 

attenuated by increasing the following adjustable 

parameter 2 1N  . 

 2 11 22min ,N k k  (2.26a) 
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where  da  is strictly positive constants to be 

adjustable and ( ) :      is any continuous 

function satisfying 

0
lim ( ) 0


 


  and 
0

lim 0
( )



 
  (2.26g) 

where 2   and   are adjustable positive constants. 

Moreover, the output tracking error of system (2.1) is 

exponentially attracted into a sphere rB , 1 2r N N , 

with an exponential rate of convergence 
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Where  2 max 2: min ,da k     (2.26i) 
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Applying the coordinate transformation (2.6) 
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Since 
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The dynamic equations of system (2.1) in the new co-

ordinates are shown as follows. 
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 (2.38) 
According to equations (2.7)(2.10)(2.31) and 

(2.32), the tracking controller can be rewritten as 

 1u d c v    (2.39) 

Substituting equation (2.39) into (2.35), the dynamic 

equations of system (2.1) can be shown as follows. 
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Combining equations (2.10) (2.12) (2.15) and (2.38), 

it can be easily verified that equations (2.40)-(2.42) 

can be transformed into the following form. 
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as a composite Lyapunov function of the subsystems 

(2.43a) and (2.43b) [30, 34], where 1( )V e  satisfies 
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Where da  and   are strictly positive constants to be 

adjustable.  In view of (2.20)-(2.22) (2.24) and (2.25), 

the derivative of  ,eV  along the trajectories of 

(2.43a) and (2.43b) is given by 
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where  

222
:  eytotal . (2.48) 

By virtue of Theorem 5.2 of [29], equation (2.47) 

implies the input-to-state stability for the closed-loop 

system. Furthermore, it is easy to see that 
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 2 max 2: min , .da k    Equations (2.47) and (2.49) 
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So that equation (2.23b) is proved.  From equation 

(2.47), we get 
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so that equation (2.23c) is satisfied and then the 

tracking problem with almost disturbance decoupling 

is globally solved.  Finally, we will prove that the 

sphere rB  is a global attractor for the output tracking 

error of system (2.1). From equations (2.26f) and 

(2.53), we get 
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is a global final attractor for the tracking error system 
of the nonlinear control systems (2.1). Furthermore, 

for y B
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that is, *L L  .  

According to the comparison theorem [37], we get 
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Consequently, we get 
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that is, the convergence rate toward the sphere rB  is 

equal to * 2 . This completes our proof. 
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According to the previous theorem and discussion, an 

efficient and programmable algorithm for deriving 

the feedback linearization control is proposed as 

follows. 

1) Step 1: Calculate the vector relative degree r  of 

the given control system. 

2) Step 2: Choose the diffeomorphism   such that 

the assumption 1 is satisfied. 

3) Step 3: Adjust some parameters   such that the 

matrices 
cA are Hurwitz and calculate the 

positive definite matrices P  of the Lyapunov 

equations (2.17) by some software package, such 

as MATLAB. 

4) Step 4: Based on the famous Lyapunov approach, 

design a Lyapunov function to solve the 

conditions (2.24a) to (2.24c). If the relative 

degree is equal to the system dimension n , then 

this step should be omitted and immediately go 

to the next step. 

5) Step 5: Appropriately tune the parameters ,   

such that 
2 1N   and go to the next step.  

Otherwise, we go to the step 3 and repeat the 

overall designing procedures. 

6) Step 6: According to the equation (2.25), the 

desired feedback linearization controller can be 

constructed such that the uniform ultimate 

bounded stability is guaranteed.  That is, the 

system dynamics enter a neighborhood of zero 

state and remain within it thereafter. 

 

 

3 Feedback Linearization Control 

Strategy for a Mathematical 

HIV/AIDS System 
The researching data appeared to show that the virus 

concentration fell exponentially for a short period 

after a patient was treated on a potent antiretroviral 

drug [40]. Thus, the following dynamic model was 

proposed 

dV
P eV

dt
   (3.1) 

where P  is an unknown function denoting the rate of 

virus production, e  is the clearance rate constant, and 

V  is the free virus load.  Virus is created by 

productively infected cells. Here we have made an 

assumption that on average each productively 

infected cell creates N  virions during its lifetime. 

Since the average lifetime of a productively infected 

cell is 1  , the average rate of virion production is 

N  and the dynamic equation (3.1) can be written as  

pi pi

dV
N T eV kT eV

dt
     (3.2) 

where piT  denotes the productively infected CD4+ 

cells and .k N  

HIV attacks cells that carry the CD4+ cell surface 

protein as well as coreceptors. The major target of 

HIV infection is the CD4+ T cell. After becoming 

attacked, such cells can create new HIV virus virions. 

Thus, to model HIV infection we address a 

population of healthy target cells, T, and productively 

infected cells, piT . The population dynamics of CD4+ 

T cells in humans is not well understood. 

Nevertheless, a reasonable and acceptable model for 

this population of cells is 

max

1
dT T

s pT dT
dt T

 
    

 
 (3.3) 

where T denotes the healthy CD4+ cells, d  is the 

death rate per T cell and s  represents the rate at 

which new T cells are created from sources within the 

body. T cells can also be produced by proliferation of 

existing T cells. We describe the proliferation by a 

logistic function in which p  is the maximum 

proliferation rate and maxT  is the T cell population 

density at which proliferation stops.  While there is 

no direct research that T cell proliferation is 

TABLE. 1 HIV/AIDS MODEL PARAMETERS 

Symbol Description Typical values and units 

b 
Infectivity rate of free virus 

particles 
64.1 10 mm-3  per day 

d 
Death rate of healthy T 

cells 
0.009 per day 

e Death rate of virus 0.6 per day 

k 
Rate of virions produced 

per infected T cell 75 counts 1cell  

s 

The constant rate of 

production of healthy T 

cells 

9 mm-3 per day 

t Time days 

w 
Death rate of infected T 

cells 
0.3 per day 

p 
Maximum proliferation 

rate 
0.03 per day 

Tmax Maximum T cell 

population density 
1500 mm-3 per day 
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described by the logistic equation, there are 

recommendations that the proliferat on rate is 

density-dependent with the rate of proliferation 

slowing as the T cell count gets high [20, 43]. 

The simplest and most common approach of 

modeling infection is to augment (3.3) with a “mass-

action" term in which the rate of infection is given by 

bTV , with b  being the infection rate constant.  This 

mass-action term is reasonable, since virus must meet 

T cells in order to attack them. When V and T  

behaviors can be regarded as independent, we can 

make an assumption that the probability of virus 

encountering a T cell at low concentrations is 

proportional to the product of their concentrations. 

Thus, we can assume that infection occurs by virus, 

causing the loss of healthy T cells at rate bTV  and 

the generation of infected T cells at rate bTV . The 

models that we focus on are one-compartment 

models in which V and T  are identified with the 

virus concentration and T cell counts measured in 

blood. In fact, infection is not restricted to blood and 

the majority of CD4+ T cells are in lymphoid tissue. 

However, the available research recommends that the 

concentration of virus and CD4+ T cells measured in 

blood is a acceptable consideration of their 

concentrations throughout the body [18, 39], as one 

would expect for a system in equilibrium state. With 

the mass-action infection term, the rates of change of 

healthy cells and productively infected cells are 

max

1
dT T

s pT dT bTV
dt T

 
     

 
 (3.4) 

pi

pi

dT
bTV wT

dt
   (3.5) 

Finally, we can summary the HIV/AIDS 

mathematical model [15] to be described as  

max

1
dT T

s pT dT bTV
dt T

 
     

 
 (3.6) 

( )
pi

pi

dT
bTV wT u t

dt
    (3.7) 

pi

dV
kT eV

dt
   (3.8) 

where the control ( )u t  represents the 

pharmacological action (dose) of antiretroviral drug 

applied to the system. The system parameters used in 

the HIV/AIDS model are listed in Table 3.1. These 

same parameters have been used in [5]. 

The goal of the control strategy ( )u t  is to keep the 

system around the equilibrium point where the viral 

load has a value near to zero. The HIV/AIDS model 

can be written in the general form 

       x t f x g x u t  , (3.9a) 

2( ) ( ) ( )y t h x x t  . (3.9b) 

Where 

1

2

3 ,

pi

T x

x T x

V x

   
   

 
   
      

 

 

1
1 1 3 1

max

1 3 2

2 3

,

1
x

s dx bx x px
T

f x bx x wx

kx ex

  
     

  
  
 

 
 
  

 

.

0

1

0

g x

 
 


 
  

 

Now we will show how to explicitly design the 

control strategy u(t) of antiretroviral drugs.  Let’s 

arbitrarily choose 1 0.005  , 0.005cA   , 100P   

and * *

min max 100   . From equation (2.25), we 

obtain the desired tracking controllers 

     1 1

1 3 2 1 2u d c v bx x wx x              . 

 (3.10) 
It can be verified that the relative conditions of 

Theorem 1 are satisfied with 0.0025  , 0dB  , 

1 2 1k k  , 4 2k  , 3 1k  , 2L   and   . 

Hence the tracking controllers will steer the output 

tracking errors of the closed-loop system, starting 

from any initial value, to be asymptotically 

attenuated to zero by virtue of Theorem 1. 

Firstly, we will observe the evolution of the infection 

in an individual without the treatment strategy of 

antiretroviral drugs (i.e. ( ) 0u t  ). The software 

simulations are evaluated by the commercial 

software MATLAB/SIMULINK 2016b®  and the 

initial conditions and the parameters of the 

HIV/AIDS model are chosen as follows: 9s  , 

0.009d  , 0.0000041b  , 0.3w  , 0.6e  , 7k  , 

(0) 1000T  cells/mm3, (0) 0piT  , (0) 0.3V  (i.e. 300 

copies/ml). 

The simulation results are shown in Fig.s 3.1-3.2. 

When the HIV virus invades the human body, it kills 

the healthy CD4+ T cells and consequently the 

amount of healthy CD4+ T cells decreases rapidly in 

the absence of treatment (Fig. 3.1). At the acute 
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infection stage, the healthy CD4+T cell drops from 

the usual 1000 cells per cubic millimeter to less than 

400 cells after about 120days. The free virus and the 

infected CD+ T cells do not stop to proliferate and so 

the abundances increase (Fig. 3.1). Subsequently, if 

we introduce the treatment, the situation will change. 

The simulation results are shown in Fig.s 3.2. The 

amount of healthy CD4+ T cells decreases, but it will 

be kept in acceptable level when control 

chemotherapy is used. The action of chemotherapy 

begins to appear and makes the growth of healthy 

CD4+ T cells and the diminishing of the free virus 

and the infected CD+ T cells.  The feedback 

linearization control input (Dose) ( )u t  for drug 

administration is represented through Fig. 3.3 by the 

control (3.3). 

It is obvious to see that the amount of infected 

CD+ T cells is kept to be zero cells per cubic 

millimeter all the time when our proposed control 

treatment is used. But, the result of [5] show that the 

amount of infected CD+ T cells decreases to zero 

after about 120 days. Moreover, the viral load 

approaches to zero after about 11 days with the action 

of our control treatment. However, the results of [5] 

and [28] show that the amount of the viral load 

decreases to zero after 720 and 50 days of drug 

treatment, respectively. Another optimal control 

using an iterative method with a Runge–Kutta fourth 

order scheme that represents how to control drug 

treatment strategies of this model is examined [27]. 

However, the virus load in presence of treatment does 

not reach to zero and the healthy CD+ T cell 

population increase almost linearly up to 45 days and 

levels off after that time. 

It is worthy to note that our proposed nonlinear 

feedback linearization control needs the 

quantification of all the state variables for HIV/AIDS 

system.  All the state variables including the healthy 

CD4+ cells, the infected CD4+ cells and the free 

virus load will be measured in the clinic.  We will 

begin clinical study of the feedback linearization 

controller (3.3) of antiretroviral drugs based on the 

utilization of electronic taste chip system, Harvard 

PHD 2000 programmable research pump and 

computer with Java program shown in Fig. 3.4-3.6. 

Electrically automatic apparatus for providing 

antiretroviral drugs could be constructed based on the 

quantification of the immune variables.  The desired 

feedback linearization control algorithm will be 

programmed in Java language chosen for its 

multiplatform portability and proto-typing.  The Java 

program will be divided into five blocks, which 

include states-loader, states-logger, controller, pump-

logger, and pump-loader. States-loader and states-

logger handle the communication between electronic 

taste chip system and computer, while pump-logger 

and pump-loader control the micro-pump device. The 

dose input (3.3) is calculated by the controller block 

and communicated to the infusion micro-pump using 

a 9600 baud rate, eight data bits, two stop bits, and 

zero parity with the utilization of a universal serial 

bus port connector.  Finally, the pump-loader opens 

the communication port to the micro-pump and 

constructs the communication protocol, while pump-

logger transfers the dose input u(t) to the micro-pump. 

 

 

Fig. 3.1 Evolutions of healthy CD4+ T cells, the free 

virus and infected CD+ T cells without control. 

Fig. 3.2. Evolutions of healthy CD4+ T cells, the free 

virus and infected CD+ T cells with control. 
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Fig. 3.3 Feedback linearization control input. (Dose) 

 

Fig. 3.4 Block diagram for the clinical study of the 

feedback linearization controller (3.3) of 

antiretroviral drugs. 

 

Fig. 3.5 Electronic Taste Chip System. (Bentwich, 

2005). 

 

Fig. 3.6 Harvard PHD 22/2000 Programmable 

research Pump. 
 
 

4 Conclusion Remarks 
A novel feedback linearization control to globally 

solve the tracking problem with almost disturbance 

decoupling for nonlinear system with uncertainties 

and develop an Acquired Immunity Deficiency 

Syndrome control strategy has been proposed. A 

discussion and a practical application of feedback 

linearization of nonlinear control systems using a 

parameterized coordinate transformation have been 

presented. A practical treatment of HIV/AIDS model 

system has been used to demonstrate the applicability 

of the proposed feedback linearization approach and 

composite Lyapunov approach. Simulation results 

have been presented to show that the proposed 

methodology can be successfully applied to feedback 

linearization problem and is able to achieve the 

desired tracking and almost disturbance decoupling 

performances of the controlled system. The 

technique of controlling the HIV/AIDS based on the 

feedback linearization control has demonstrated to be 

effective in the simulations. 

In comparison with some existing approaches, the 

performances of drug treatment based on our 

proposed novel nonlinear geometric feedback control 

approach are better, i.e., the healthy CD+ T cell 

population can be kept in original cells per cubic 

millimeter and the viral load is reduced only after 

more short days of drug treatment. All the state 

variables of HIV/AIDS model system can be 

measured using the electronic taste chip system, 

programmable research micro-pump and computer 

with Java program in the clinical study. Finally, we 

believe that the novel methodology can be used for 

solving many control problems in biomedical areas 

in future. 
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